Hall Ticket Number:

Time: 3 hours

Code No. : 13204 S

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (CSE: CBCS) III-Semester Supplementary Examinations, May/June-2018

Discrete Structures

Max. Marks: 70

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

- 1. Write converse, contrapositive and inverse of the conditional proposition $p \rightarrow q$.
- 2. List out any *four* English constructs of biconditional connective $p \leftrightarrow q$.

3. Define an injective function and give an example.

- 4. Let $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^3 2$, Find f^{-1} .
- 5. Solve the recurrence relation $F_n = F_{n-1} + F_{n-2}$, where $F_0 = 0, F_1 = 1$
- 6. Write the Generating function that generates sequence 1,4,9,16,25,.....
- Determine whether each of the following pairs of integers is congruent modulo 9
 i) -137, 700
 ii) -56, -1199.
- 8. Define "multiplicative inverse" and give an example
- 9. What is an Hamming Metric ?
- 10. Define a monoid.

Part-B $(5 \times 10 = 50 \text{ Marks})$

11. a)	Use substitution rules to verify that each of the following is a tautology.(Here p,q	[6]
	and r are primitive statements).	
	a) $[p \vee (q \wedge r)] \vee \neg [p \vee (q \wedge r)]$	
	b) [$(p \lor q) \rightarrow r$] \leftrightarrow [$\neg r \rightarrow \neg (p \lor q)$]	
	Verify Absorption Laws by means of a truth table.	[4]
12. a)	Draw the Hasse diagram of the following sets under the partial ordering relation	[6]
	"divides," and indicate those which are totally ordered.	
	$\{2,4,8,16\}$ $\{1,2,3,6,12\}$ $\{3,5,15\}$	
b)	Let $X = \{1, 2,, 7\}$ and $R = \{(x, y) x - y \text{ is divisible by } 3\}$.	[4]
•	Show that R is an equivalence relation.	
13. a)	Solve the recurrence relation $a_n-8a_{n-1}+16a_{n-2}=8(5)^n$ where $a_0=12$, $a_1=5$	[5]
b)	In how many ways can two dozen identical robots be assigned to four assembly	[5]
	lines with i)at least three robots assigned to each line ? ii) at least three, but no	
14	more than nine robots to each line?	5.53
14. a)		[5]
	definition of a ring) that are needed to prove each of the following results.	
	i) $(a+b)+c=b+(c+a)$ ii) $c(d+b)+ab=(a+c)b+cd$	5 4 7
b	If $f: R \rightarrow S$ is a ring homomorphism and J is an ideal of S, prove that	[5]
	$f^{-1}(J) = \{a \in \mathbb{R} \mid f(a) \in J\}$ is an ideal of R	

15 0)	
15. a), In a monoid, show that the set of left-invertibles form a sub-monoid.b) Prove that for any commutative monoid (16.4).	
 b) Prove that for any commutative monoid (M, *), the set of idempotent elements of M forms a submonoid. 	[5]
16. a) Prove that any 7 ^t we set of idempotent elements of	[5]
$2 \cos \theta$ matally Z, $gcd(5n+3, 7n+4) = 1$	6.7.1
Let $1.1 \leftarrow R$ is a function $f(x) = 2x \in \mathbb{R}^{-1}$	[5]
f(0), f(5/3), f ¹ (-3), f ¹ (6), f ¹ ([5,-5]) 17. Answer $x \ge 0$, f(x)=-3x+1 where $x \le 0$, then find	[5]
 a) Solve the fell 	
Sorve me following recurrence relation	[5]
$a_{n+2} + 4a_{n+1} + 4a_n = 7$, $n \ge 0$, $a_0 = 1$, $a_1 = 2$.	[5]
0250 if $e=11$ and $n=2501$. 0250 if $e=11$ and $n=2501$.	[5]
c) i) Let p=0.01 be the probability of incorrect transmission for a binary symmetric channel. If the message 1011 is sent via the Hamming (7.1)	
probability of correct decoding?	[5]
ii) Answer part (i) for a 20-bit message sent in five blocks of length 4.	
blocks of length 4.	

$Part-B (5 \times 10 \pm 50 Marks)$	
I an examination rules to venty that and of the following is a musicage (Here p.)	
If a) threa the Hasse diagram of the following acts mode the partial undering rotation	
with the providence must be an end there	
The second s	
14 al Let (R.v) best ting with a, b. c. d Protects of R. State the conditional from the	
p harmon explants provided for some all of the	